Memetic Gravitational Search Algorithm with Hierarchical Population Structure

Shibo Dong, Haotian Li, Yifei Yang, Jiatianyi Yu, Zhenyu Lei, Shangce Gao

研究成果: ジャーナルへの寄稿学術論文査読

抄録

The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnerability to local optima, impeding its capacity to converge to a globally optimal solution. To alleviate the susceptibility of the algorithm to local optima and achieve a more balanced integration of local and global search strategies, we introduce a novel algorithm derived from CGSA-M, denoted as CGSA-H. The algorithm alters the original population structure by introducing a multi-level information exchange mechanism. This modification aims to mitigate the algorithm’s sensitivity to local optima, consequently enhancing the overall stability of the algorithm. The effectiveness of the proposed CGSA-H algorithm is validated using the IEEE CEC2017 benchmark test set, consisting of 29 functions. The results demonstrate that CGSA-H outperforms other algorithms in terms of its capability to search for global optimal solutions.

本文言語英語
ページ(範囲)94-103
ページ数10
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E108.A
2
DOI
出版ステータス出版済み - 2025/02

ASJC Scopus 主題領域

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Memetic Gravitational Search Algorithm with Hierarchical Population Structure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル