Improved snow ablation optimization for multilevel threshold image segmentation

Rui Zhong, Chao Zhang, Jun Yu*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

Snow ablation optimization (SAO) is a novel metaheuristic algorithm (MA). However, we observed certain issues in the original SAO, such as poor capacity in escaping from local optima and slow convergence. To address these limitations, we introduce two strategies: the asynchronous update strategy (AUS) and the top-k survival mechanism. We name our proposal SAOk-AUS. In the original SAO, the segregation of search and update delays the improved information sharing, and AUS integrates update processes following each individual’s search behavior, facilitating superior knowledge from elites. Additionally, the original SAO adopts an all-acceptance selection principle, maintaining diversity but cannot guarantee the solution quality. Thus, we introduce the top-k survival mechanism to ensure the survival of elites. Comprehensive numerical experiments on CEC2013 and CEC2020 benchmark functions, engineering problems, and image segmentation tasks were conducted to evaluate our proposal against eight state-of-the-art MAs. The experimental results and statistical analyses confirm the efficiency of SAOk-AUS. Moreover, the ablation experiments investigate the contribution of two strategies, and we recommend using both proposed strategies simultaneously. The source code of this research is made available in https://github.com/RuiZhong961230/SAO_k-AUS.

本文言語英語
論文番号16
ジャーナルCluster Computing
28
1
DOI
出版ステータス出版済み - 2025/02

ASJC Scopus 主題領域

  • ソフトウェア
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Improved snow ablation optimization for multilevel threshold image segmentation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル