DFNet: A Differential Feature-Incorporated Residual Network for Image Recognition

Pengxing Cai, Yu Zhang, Houtian He, Zhenyu Lei, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that maps inputs directly to outputs, making it less difficult to optimize. In this paper, we incorporate differential information into the original residual block to improve the representative ability of the ResNet, allowing the modified network to capture more complex and metaphysical features. The proposed DFNet preserves the features after each convolutional operation in the residual block, and combines the feature maps of different levels of abstraction through the differential information. To verify the effectiveness of DFNet on image recognition, we select six distinct classification datasets. The experimental results show that our proposed DFNet has better performance and generalization ability than other state-of-the-art variants of ResNet in terms of classification accuracy and other statistical analysis.

本文言語英語
論文番号102599
ページ(範囲)931-944
ページ数14
ジャーナルJournal of Bionic Engineering
22
2
DOI
出版ステータス出版済み - 2025/03

ASJC Scopus 主題領域

  • バイオテクノロジー
  • バイオエンジニアリング
  • 生物理学

フィンガープリント

「DFNet: A Differential Feature-Incorporated Residual Network for Image Recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル