An Improved Whale Optimization Algorithm with Adaptive Fitness-Distance Balance

Chunzhi Hou, Zhenyu Lei, Baohang Zhang, Zijing Yuan, Rong Long Wang, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Whale optimization algorithm (WOA) is a new bio-meta-heuristic algorithm presented to simulate the predatory humpback whales' behavior in the ocean. In previous studies, WOA has been observed to exhibit lower accuracy and slower convergence rates. In this paper, we propose an improved the WOA by innovatively incorporating an adaptive fitness-distance balance strategy, namely AFWOA. AFWOA can continuously and efficiently identify the maximum potential candidate solutions from the population within the search process, thus improving the accuracy rate and convergence speed of the algorithm. Through various experiments in IEEE CEC2017 and an ill-conditional problem, AFWOA is proven to be more competitive than the original WOA, several other state-of-the-art WOA variants and other four classic meta-heuristic algorithms.

本文言語英語
ページ(範囲)232-243
ページ数12
ジャーナルIEEJ Transactions on Electrical and Electronic Engineering
20
2
DOI
出版ステータス出版済み - 2025/02

ASJC Scopus 主題領域

  • 電子工学および電気工学

フィンガープリント

「An Improved Whale Optimization Algorithm with Adaptive Fitness-Distance Balance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル