Alternating Excitation-Inhibition Dendritic Computing for Classification

Jiayi Li, Zhenyu Lei*, Zhiming Zhang, Haotian Li, Yuki Todo*, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

The addition of dendritic inhibition has been shown to significantly enhance the computational and representational capabilities of neurons. However, this inhibitory mechanism is mostly ignored in the existing artificial neural networks (ANNs). In this article, we propose the alternating excitatory and inhibitory mechanisms and use them to construct an ANN-based dendritic neuron, the alternating excitation-inhibition dendritic neuron model (ADNM). Subsequently, a comprehensive multilayer neural system named the alternating excitation-inhibition dendritic neuron system (ADNS) is constructed by networking multiple ADNMs. To evaluate the performance of ADNS, a series of extensive experiments are implemented to compare it with other state-of-the-art networks on a diverse set consisting of 47 feature-based classification datasets and two image-based classification datasets. The experimental results demonstrate that ADNS outperforms its competitors in classification tasks. In addition, the impact of different hyperparameters on the performance of the neural model is analyzed and discussed. In summary, the study provides a novel dendritic neuron model (DNM) with better performance and interpretability for practical classification tasks.

本文言語英語
ページ(範囲)5431-5441
ページ数11
ジャーナルIEEE Transactions on Artificial Intelligence
5
11
DOI
出版ステータス出版済み - 2024

ASJC Scopus 主題領域

  • コンピュータ サイエンスの応用
  • 人工知能

フィンガープリント

「Alternating Excitation-Inhibition Dendritic Computing for Classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル