A spherical evolution algorithm with two-stage search for global optimization and real-world problems

Yirui Wang, Zonghui Cai, Lijun Guo, Guoqing Li, Yang Yu, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

5 被引用数 (Scopus)

抄録

This paper proposes a spherical evolution algorithm with two-stage search. Spherical search and hypercube search are combined to achieve individuals' evolution. A self-adaptive Gaussian scale factor and a variable scale factor are designed to adaptively control individuals' spherical and hypercube search area according to their search situations. Two search stages frequently switch with four search cases to enhance the balance between exploration and exploitation processes. A directed adjacency matrix is devised to analyze the relationship among individuals from the perspective of graph theory. Experiments compare the proposed algorithm with five algorithms with distinctive search patterns on twenty nine CEC2017 benchmark functions. The diversity analysis and graph theory analysis show the good population diversity and effective information spreading of the proposed algorithm. Twenty two real-world problems evaluate the practicality and optimization ability of the proposed algorithm. Finally, the computational time complexity demonstrates that the proposed algorithm is more efficient than the original spherical evolution algorithm.

本文言語英語
論文番号120424
ジャーナルInformation Sciences
665
DOI
出版ステータス出版済み - 2024/04

ASJC Scopus 主題領域

  • ソフトウェア
  • 制御およびシステム工学
  • 理論的コンピュータサイエンス
  • コンピュータ サイエンスの応用
  • 情報システムおよび情報管理
  • 人工知能

フィンガープリント

「A spherical evolution algorithm with two-stage search for global optimization and real-world problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル