A Lightweight Multidendritic Pyramidal Neuron Model With Neural Plasticity on Image Recognition

Yu Zhang, Pengxing Cai, Yanan Sun, Zhiming Zhang, Zhenyu Lei*, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

5 被引用数 (Scopus)

抄録

Simulating the method of neurons in the human brain that process signals is crucial for constructing a neural network with biological interpretability. However, existing deep neural networks simplify the function of a single neuron without considering dendritic plasticity. In this article, we present a multidendrite pyramidal neuron model (MDPN) for image classification, which mimics the multilevel dendritic structure of a nerve cell. Unlike the traditional feedforward network model, MDPN discards premature linear summation integration and employs a nonlinear dendritic computation such that improving the neuroplasticity. To model a lightweight and effective classification system, we emphasized the importance of single neuron and redefined the function of each subcomponent. Experimental results verify the effectiveness and robustness of our proposed MDPN in classifying 16 standardized image datasets with different characteristics. Compared to other state-of-the-art and well-known networks, MDPN is superior in terms of classifica-tion accuracy.

本文言語英語
ページ(範囲)4415-4427
ページ数13
ジャーナルIEEE Transactions on Artificial Intelligence
5
9
DOI
出版ステータス出版済み - 2024

ASJC Scopus 主題領域

  • コンピュータ サイエンスの応用
  • 人工知能

フィンガープリント

「A Lightweight Multidendritic Pyramidal Neuron Model With Neural Plasticity on Image Recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル